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Abstract

We present an algorithm for fusing multi-viewpoint video (MVV) with inertial mea-
surement unit (IMU) sensor data to accurately estimate 3D human pose. A 3-D convo-
Iutional neural network is used to learn a pose embedding from volumetric probabilistic
visual hull data (PVH) derived from the MVV frames. We incorporate this model within
a dual stream network integrating pose embeddings derived from MVV and a forward
kinematic solve of the IMU data. A temporal model (LSTM) is incorporated within
both streams prior to their fusion. Hybrid pose inference using these two complementary
data sources is shown to resolve ambiguities within each sensor modality, yielding im-
proved accuracy over prior methods. A further contribution of this work is a new hybrid
MVYV dataset (TotalCapture) comprising video, IMU and a skeletal joint ground truth
derived from a commercial motion capture system. The dataset is available online at
http://cvssp.org/data/totalcapture/.

1 Introduction

The ability to record and understand 3-D human pose is vital to a huge range of fields, from
biomechanics, psychology, animation, and computer vision. Human pose estimation aims to
deduce a skeleton from data in terms of 3-D limb location/orientation or a probability map
of their locations. Currently to achieve a highly accurate understanding of the human pose,
commercial marker-based systems such as Vicon [3] or OptiTrack [1] are used.

However, marker-based systems are intrusive and restrict the motions and appearance
of the subjects, and often fail with heavy occlusion or in high illumination. A special suit
augmented with small reflective markers and, many specialist cameras (IR) are necessary,
increasing cost and setup time and restricts the shooting to artificially lit areas. To remove
these constraints there has been significant progress in the vision-based estimation of 3D
human pose. however, a complex human body model is used to constrain the estimates [34] or
depth data [37] is required. Inertial Measurement Units (IMUs) [2, 25] have been introduced
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Figure 1: Our two-stream network fuses IMU data with volumetric (PVH) data derived from

multiple viewpoint video (MVV) to learn an embedding for 3-D joint locations (human pose).

as a compromise, placed on key body parts and used for motion capture, without the concerns
of occlusions and illumination. However, they suffer from drift over even short time periods.

Therefore we propose the fusion of vision and IMUs to estimate the 3-D joint skeleton of
human subjects overcoming the limitations of the drift and lack of positional information in
IMU data and the requirement of learnt complex human models. We show that the comple-
mentary modalities mutually reinforce one another during inference; rotational and occlusion
ambiguities are mitigated by the IMUs whilst global positional drift is mitigated by the video.
Our proposed solution combines alpha foreground mattes from a number of synchronised
wide baseline video cameras to form a probabilistic visual hull (PVH), which is used to train
a 3-D convolutional network to predict joint estimates. These joint estimates are fused with
joint estimates from IMU data within a simple kinematic model, as illustrated in Fig 1. Taking
advantage of the temporal nature of the sequences, Temporal Sequence Prediction (TSP) is
employed on the video and IMU pose estimates to provide contextual frame-wise predictions
using a variant of Recurrent Neural Networks (RNN) using LSTM layers. The two indepen-
dent data modes are fused within a two-stream network so combining the complementary
signals from the multiple viewpoint video (MVV) and IMUs. Currently, there is no dataset
available containing IMU and MV'V video with a high-quality ground truth. We release such
a multi-subject, multi-action dataset as a further contribution of this work.

2 Related Work

Approaches can be split into two broad categories; a top-down approach to fit an articulated
limb kinematic model to the source data and those that use a data driven bottom-up approach.

Lan [18] provide a top down model based approach, considering the conditional inde-
pendence of parts; however Inter-Limb dependencies (e.g. symmetry) are not considered. A
more global treatment is proposed in [17] using linear relaxation but performs well only on
uncluttered scenes. The SMPL body model [21] provides a rich statistical body model that
can be fitted to incomplete data and Marcard [35] incorporated IMU measurements with the
SMPL model to provide pose estimation without visual data.

In bottom-up pose estimation, Ren [24] recursively splits Canny edge contours into seg-
ments, classifying each as a putative body part using cues such as parallelism. Ren [23] also
used BoVW for implicit pose estimation as part of a pose similarity system for dance video
retrieval. Toshev [31], in the DeepPose system, used a cascade of convolutional neural net-
works to estimate 2-D pose in images. Sanzari [26] estimates the location of 2D joints, before
predicting 3D pose using appearance and probable 3-D pose of the discovered parts with a
hierarchical Bayesian model. While Zhou [38] integrates 2-D, 3-D and temporal information
to account for uncertainties in the data. The challenge of estimating 3D human pose from
MVV is currently less explored, although initial work by Trumble [32] used MVV with a


Citation
Citation
{Lan and Huttenlocher} 2005

Citation
Citation
{Jiang} 2009

Citation
Citation
{Loper, Mahmood, Romero, Pons-Moll, and Black} 2015

Citation
Citation
{von Marcard, Rosenhahn, Black, and Pons-Moll} 2017{}

Citation
Citation
{Ren, Berg, and Malik} 2005

Citation
Citation
{Ren and Collomosse} 2012

Citation
Citation
{Toshev and Szegedy} 2014

Citation
Citation
{Sanzari, Ntouskos, and Pirri} 2016

Citation
Citation
{Zhou, Zhu, Leonardos, Derpanis, and Daniilidis} 2016

Citation
Citation
{Trumble, Gilbert, Hilton, and Collomosse} 2016


TOTAL CAPTURE: POSE ESTIMATION FUSING VIDEO AND IMU DATA 3

simple 2D convolutional neural network (convnet), and Wei [36] performed related work
aligning pairs of 3D human pose. While Huang [15] used a tracked 4-D mesh of a human
performer from video reconstruction for estimating pose.

To predict temporal sequences, RNNs and their variants including LSTMs [13] and Gated
Recurrent Units [7] have recently shown to successfully learn and generalise the properties
of temporal sequences. Graves [10] was able to predict isolated handwriting sequences, and
transcribe audio data with text [11]. While Alahi [4] was able to predict human trajectories
of crowds by modelling each human with an LSTM and jointly predicting the paths.

In the field of IMUs, Roetenberg [25], used 17 IMUs with 3-D accelerometers, gyroscopes
and magnetometers to define the pose of a subject. Marcard [33] fused video and IMU data
to improve and stabilise full body motion capture. While Helten [12] used a single depth
camera with IMUs to track the full body.

3 Methodology

A geometric proxy of the performer is constructed from MVV on a per frame basis and
passed as input into a convnet designed to accept a 3-D volumetric representation, the network
directly regresses an embedding that encodes 3-D skeletal joint positions. That estimate is
then processed through a temporal model (LSTM) and fused with a similarly processed signal
from a forward kinematic solve of the IMU data to learn a final pose embedding (Fig. 2).

3.1 Volumetric Representation of Proxy

Images from the MVV camera views are integrated to create a probabilistic visual hull
(PVH) adapting the method of Grauman [9]. Each of the C cameras, ¢ = [1;C], where C >
3, is calibrated with known orientation R¢, focal point COP, focal length f; and optical
centre 0y; 0, the image from which is denoted I.. A 3D performance volume centred on

the performer, is decimated into voxels V = fV;;:::;Ving approximately Icm? in size. Voxel
occupancy from a given view C is defined as the probability:
p(vjc) = B(lc(xVil;yIVil) (D

Where B(:) is background subtraction of I from a clean plate at image position (X;y) and
where the voxel V; projects to:

f f

XV]= S o and yM] = < +o); @)
Vz Vz

where [Vvx W Vv, | = COP. R 'V 3)

The overall probability of occupancy for a given voxel p(V) is the product over all views:

C

p(vi)=  p(Vjc); “4)
=1

calculated for all V; 2 V to create the initial PVH. This is down sampled via a Gaussian filter
to a volume of dimensions 30 30 30, the input size for our CNN.
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Figure 2: Network architecture (a) comprising two streams: a 3D Convnet for MVV/PVH
pose embedding, and kinematic solve from IMUs. Both streams pass through LSTM (b)
before fusion of the concatenated estimates in a further FC layer.

3.2 Network Architecture
3.2.1 Volumetric Pose Estimation

The MVYV processes volumetric input through a series of 3-D convolution and max-pooling
layers to a series of fully connected (fc) layers terminating in 78-D output layer (3 26
encoding Cartesian coordinates of 26 joints). Table 1 lists the filter parameters for each
layer (Fig. 2a, red stream). Both max-pooling layers are followed by a 50% dropout layer
and ReLu activation is used throughout. A training set comprising exemplar PVH volumes
V = fvy;V; 5 vpng downsampled to 30 30 30 and corresponding ground truth poses P =
Tp1;p2; i png are used to learn pose embedding E(V) A P minimising:

LEPV)= kpi f(wks: )

i=1

During training V is augmented by applying a random rotation about the central vertical
axis, g = [0;2p] encouraging pose invariance with respect to the direction the performer.

Layer Convl Conv2 Conv3 MP1 Convd4 MP2 FCl FC2 FC3
Filter dim. 5 3 3 2 3 2 1024 1024 1024
Num. filters 64 96 96 - 96 - 1024 1024 78
Stride 2 1 1 2 1 2 1 1 1

Table 1: Parameters of the 3-D Convnet used to infer the MVV pose embedding.

3.2.2 Inertial Pose Estimation

We use orientation measurements from 13 Xsens IMUs [25] to estimate the pose. The IMU
sites are the upper and lower limbs, feet, head, sternum and pelvis. For each IMU, k 2 [1;13],
we assume rigid attachment to a bone and calibrate the relative orientation, Rrb, between them.
The reference frame of the IMUs, Rjy, is also calibrated approximately a%ainst the global co-
ordinates. Using this calibration, a local IMU orientation measurement, Ry, is transformed to
a global bone orientation, Ry, as follows: Rf = (RX) 'R¥ RK . The local (hierarchical) joint

rotation, Rih, for bone i in the skeleton is inferred by forward kinematics: RL = RL (Rl;))ar(i)) 1
where par(i) is the parent of bone i. The forward kinematics begins at the root and proceeds
down the joint tree (with unmeasured bones kept fixed).
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3.2.3 LSTM Temporal Prediction

Both the image and inertial sensors estimate on a per frame basis, however it is desirak
exploit the temporal nature of the signal. Following the success of RNNs for sequence pre
tion, we propose a Temporal Sequence Prediction (TSP) model to learn previous conte»
joint estimations to provide the ability to generalise and predict future joint locations. We
Long Short Term Memory (LSTM) layerd ] that are able to store and access informatior
over long periods of time but mitigate the vanishing gradient problem common in RNI
(Fig. 2, right). Given an input vectog¢ and resulting output vectdr, there are two learnt
weightswW andU, to learn the function that minimises the loss between the input vector a
the output vectoh; = ot sh(¢) ( denotes the Hadamard product), where the memory
cell

= f ¢ 1+it Sp(Wixe+ Uchy 1+ o) ©
6

which is formed by three gates shown in Fig 2 (b), an input gatentrols the extent to which
a new input vectog; is kept in the memaory,

it = sg(Wix + Uihy 1+ by).
()

A forget gatef; controls the extent to which a value remains in memory,

fr = sg(Wix + Ughy 1+ by)
(8)

and an output gate; controls the extent to which the value in memory is used to compu
the output activation of the block,

0t = Sg(Wox + Uoht 1+ by)
)

Where the activation functions are as folloves; a sigmoid functionsy, is a hyperbolic
tangents, and is a vector constant. The weights are trained with back-propagation usi
the same euclidean loss function as in equation 5. There is one independent model for
modality, the vision and IMU, and LSTM learns joint locations based on the prevfious
frames and predicts their future position. In implementation, we used two layers both w
1024 memory cells, look back= 5 and a learning rate of 18 with RMS-prop [8].

3.2.4 Modality Fusion

The vision and IMU sensors both independently provide a 3D coordinate per joint estim
Therefore, it would make sense to incorporate both modes into the nal estimate, given t
complementary nature. Naively, an average of the two joint estimates could be used,
would be fast and effective assuming both modalities have small errors, however it is lik
that often large errors will be present on one of the modes. We therefore propose to
the two modes with a further fully connected layer. This learns the mapping between
predicted joint estimates of the two data sources and the actual joint locations, allowing er
in the pose from the vision and IMU to be identi ed and corrected for the combined fus
model. The fully connected fusion layer consists of 64 units and was trained with an RN
prop optimiser §] with learning rate ofL0 “. All stages of the model are implemented using
Tensor ow.



6 TOTAL CAPTURE: POSE ESTIMATION FUSING VIDEO AND IMU DATA
4 Evaluation

We evaluate our approach on two 3D human pose datasets. We evaluate our MVV on
method (Sec 3.1) for pose estimatioe, using visual data alone, on the MVV databkt-
man3.6M[16]. Second, we evaluate our full proposed network (using MVV and IMU data)
on TotalCapture a new dataset containing MVV and IMU data (plus ground truth).

4.1 Human 3.6M

The Human 3.6M dataset §] consists of 3.6 million MVV and vicon frames, with 5 female
and 6 male subjects, captured on 4 cameras.The subjects are performing typical activiti
such as walking, eating, etc. Given the lack of IMU data, we are only able to evaluate th
performance of the vision component (3D convnet) of our proposed approach. That is frol
the upper (red, and red+green) branch of Fig 2 (a) without fusion of the IMU data. We us
the standard evaluation protocol as followed b, [19, 28, 29, 30] where subjects S1, S5,
S6, S7, S8 are used for training and Subjects S9, S11 provide the test sequences. We :
compare the results of our proposed appro@eti-TSP to a 3D triangulated version of
the recent Convolution Pose Machir@g fvith error rejection,Tri-CPM . Per camera 2D
joint estimates are triangulated into a 3D point, using a rejection method that maximises tt
number of 2D estimates with the lowest 3D re-projection exreia a sigmoid based error
metricEg = Wlaxb)’ where a and b are constants controlling con dence fall off. This is
also presented with further training on the Temporal Sequence Predictor (TSP) model fro
section 3.2.3, denoteRI-CPM-TSP. To evaluate performance we use the 3D Euclidean
error metric, the mean Euclidean distance between the regressed 3D and ground truth, a
aged over all 17 joints in millimetres (mm). Results of our 3D volumetric approach with the
Temporal Sequence Prediction (TSP) compared to previous approaches is shown in Tabl
Our approach achieves excellent results despite excluding the fusion with the kinematic bas

Approach Direct. Discus Eat Greet. Phone Photo Pose Purch.
Lin [19] 132.7 1836 1324 1644 162.1 205.9 150.6 171.3
ekin [29] 85.0 108.8 84.4 98.9 119.4 95.7 98.5 93.8
Tome [30] 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8
Tri-CPM [6] 125.0 1114 1019 1422 1254 147.6 109.1 133.1
Tri-CPM-TSP [6] 67.4 71.9 65.1 108.8 88.9 112.0 55.6 77.5
PVH-TSP 92.7 85.9 72.3 93.2 86.2 101.2 75.1 78.0
Sit. SitD  Smke Wait W.Dog walk W.toget. Mean

Lin [19] 151.6 243.0 1621 170.7 177.1 96.6 127.9 162.1
ekin [29] 73.8 1704 851 1169 1137 62.1 94.8 100.1
Tome [30] 110.2 1739 85.0 85.8 86.3 71.4 73.1 88.4
Tri-CPM [6] 1357 1421 116.8 128.9 111.2 105.2 124.2 124.0
Tri-CPM-TSP [6]  92.7 110.2  80.3 100.6 71.7 57.2 77.6 88.1
PVH-TSP 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3

Table 2: A Comparison of our approach to other works on the Human 3.6m dataset

IMU. We observe competitive performance wrt. the state of the art although some actior
perform poorly; this is likely due to the limited view (4) of Human3.6M affecting the PVH
quality.

4.2 Total Capture

There are a number of high-quality hand labelled 2D human pose datasgik However,
the hand labelling of 3D human pose is far more challenging and optical motion captur






